Noetherian properties in monoid rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

Fully Bounded Noetherian Rings

Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...

متن کامل

On Nonnil-Noetherian Rings

Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...

متن کامل

Rigid left Noetherian rings

Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2003

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(03)00103-8